OK Geometry Sketch Editor
 Reference for OK Geometry Sketch Editor (v. 20)
 Zlatan Magajna

April 2024

Contents

1. Sketch Editor of OK Geometry 5
1.1. The interface 5
1.2. A first example
2. General guidelines 8
2.1. How to find command 8
2.2. The blue dot 9
2.3. Command first, then parameters. 10
2.4. Only labelled points count. 10
2.5. Alternative solutions 10
2.6. Safe points 11
2.7. The anchor command 12
2.8. Geometric transformations and numeric parameters 13
2.9. Commands on polylines 14
3. Toolboxes 15
3.1. Visibility and current style information 15
3.2. Sketch Editor toolbox. 16
4. Description of the menu commands 20
4.1. Sketch Editor: menu organisation. 20
Action commands 20
Point commands 20
Line commands 20
Circle commands 20
Number commands 20
Transformation commands. 20
Advanced commands 20
(Special commands) 20
(Generic constructions) 20
4.2. Action commands 21
New project. 21
New construction 21
Drag point/parameter. 21
Hide 21
Show hidden 21
Delete 21
Redefine object 22
Visually align 2 points 22
Anchor label/angle/text/line 22
Labels|Auto label 23
Labels|Label vertex 23
Labels|Clear label 23
Labels|Set next label 23
Labels|Label all 23
Labels|Clear all labels 23
Mark|Mark angle 23
Mark|Mark area. 24
(Mark|Toggle Unknown status) 24
(Clear all Unknown) 24
Mark|Mark arrow 24
Mark|Mark congruence 25
Mark|Marker 25
Mark|Detour point 26
Mark|Detour segment 26
Mark|Text 26
Background 27
Background|Background from file 27
Background|Background from clipboard. 27
Background|Clear background 27
Scenes. 27
Emphasise|Toggle bleach 27
Emphasise|All bleach 27
Emphasise|Unmark all bleach 27
Emphasise|Toggle emphasis 28
Emphasise|Unmark all emphasis 28
Emphasise|Toggle transparent 28
Emphasise|Unmark all transparent 28
Emphasise|Make everything transparent 28
Restyle objects 29
Undo command 29
Redo command 29
Zoom|Zoom in [Ctrl+Plus] 29
Zoom|Zoom out [Ctrl+Minus] 29
Zoom|Pan view 29
Zoom|Zoom view 29
Zoom|Zoom save [Ctrl+End] 29
Zoom|Fit points/objects [Ctrl+Home] 30
4.3. Point commands 30
Point 30
Point on object 30
Intersection 30
PointXY 30
Safe points 31
Midpoint 31
Divide ratio 32
Centre of circle 32
Nearest point 32
At length. 32
Triangle 4 centres 32
Harmonic conjugate 32
Vertices 33
Conic points 33
Intersections| Intersections 34
Intersections| Nearest intersection 34
Intersections| Farthest intersection 34
Grids|Uniform divide 34
Grids|Rectangular grid 34
Grids|Circular grid 35
4.4. Line commands 35
Line: 2 points 35
Line: point + angle 35
Segment 35
Perpendicular segment 35
Polyline. 36
Parallel line 36
Perpendicular line 36
Bisector 36
Angle bisector 36
Line: 2 objects 36
4.5. Circle commands. 37
Circle: centre + point 37
Circle: centre + radius 37
Compass 38
Apollonius circle 38
Circle: centre + object 38
Circle: radius +2 objects 38
Circle: central angle +2 objects 38
Circle: 3 objects. 39
Semicircle 39
Arc 3 pts 39
Arc centre 39
Indicate arc. 40
Conic 5 points 40
(Cubic 9 points) 40
4.6. Number commands. 40
Distance to object 40
Radius of circle 40
Angle size 41
Length, perimeter 41
Area 41
Ratio of segments 41
(Winding number) 42
Value, Expression 43
Compose conditions. 43
(Triangle expression) 44
4.7. Transformations commands 44
Translation 45
Reflection 45
Rotation symmetry. 45
Rotation. 45
Dilatation 45
Similarity 46
Projectivity 46
Inversion wrt. circle 46
Compose transformations 46
Inverse transformation 46
Transform object. 47
Other | Multiply object by grid 47
Multiply along polyline 48
Repeat transformation 48
4.8. Advanced commands. 48
Shapes 48
Check property 49
Locus 50
Implicit locus 50
Implicit construction 50
Optimisation 51
Make macro 51
Get macro 52
Execute macro 52
5. Examples 53
5.1. Predefined shapes. Commands on a polyline 53
5.2. Complex construction operations 54
5.1. Transformations 56
5.2. Implicit constructions. 58
5.3. Implicit objects by measuring 62
5.4. Implicit objects by construction 64
5.5. Constructions by optimisation 66
5.6. Locus of points 71
5.7. Macros 73
5.8. Creating scenes. 74
Incremental scenes 75
0-Initial/final 75
1-Initial scene 75
Scene 2 75
Scene 3 75
Scene 4 75
Scene 5 75
Differential scenes. 77
1-Initial scene 77
Scene 2 77
Scene 3 77
Scene 4 78
Scene 5 78
Scene 6 78
Scenes from observed properties 78
1-Initial scene 79
Scene 2 - Similar triangles. 79
Scene 3 - Equal area 79
Scene 4 - Tangent line 79
Scene 5 - Multiple intersections 79
Scene 6 - Same ratio 79
Editing scenes 81
6. An overview of representation of objects 82

OK Geometry Sketch Editor is similar in many respects to other dynamic geometry software programmes, but differs in some important aspects. You can get a first impression of Sketch Editor in Section 1. We strongly recommend reading Section 2, which describes important features of this editor. Section 3 and 4 provide details of operations and editor commands that might interest you. Finally, Section 5 contains step-by-step descriptions of various examples, all of which are provided with the source files.

1. Sketch Editor of OK Geometry

Creating and editing constructions in OK Geometry is generally similar to creating and editing them in other dynamic geometry software. OK Geometry allows many operations that are common in dynamic geometry programs (e.g. dragging points, defining macros). However, there are differences due to the specific aims of OK Geometry. Dynamic geometry programs promote, above all, conceptual understanding - thus, only very simple construction commands are available, because students should understand how to work out constructions from basic operations. Furthermore, these programs enable elaborated visual representations for effective explorations and demonstrations. On the other hand, the aim of OK Geometry is to promote hypothetising, deductive reasoning, and proving. Consequently, the commands of OK Geometry Sketch Editor allow fast and efficient design of geometric configurations. Besides direct non-trivial constructions (e.g. to construct a circle that touches three given circles) the Sketch Editor also allows implicit constructions and constructions based on optimisation. Such constructions are obtained by imposing additional restrictions or optimisation requirements to an existing construction. For example, in a given construction we may want a triangle in a construction to be equilateral or that its area is minimal. Using specific tools (described in the help file of OK Geometry Basic and OK Geometry Plus) we then analyse the obtained configuration, study its properties, perhaps find how to construct it with compass and ruler, and, possibly, also prove some properties of the designed configuration.

Note that the Sketch Editor is not available in Easy mode of OK Geometry. The Sketch Editor in Plus mode is essentially the same as in Basic mode, it only has two additional groups of commands, which are described in OK Geometry Plus reference manual.

1.1. The interface

The Sketch Editor of the OK Geometry is accessed via the Sketch button on the main menu bar. To exit edit mode, click on the Sketch button again or click another button on the main menu bar.

The left part of the interface (the information pane) contains various sections that can be collapsed or expanded (Figure 1). You can expand or collapse each section by clicking the triangular button next to the section title (right click on these buttons for a full expansion). In the Task section you can write or edit textual information related to the construction (e.g., description of a construction, formulation of a task, comments). The Treatment section contains information to be used in the analysis (outside the Sketch Editor). The section Transformations \& Parameters contains the lists of transformations and parameters/expressions that are declared in a construction. Finally, the Help section contains explanations of the commands used. You can at any time turn the Help section on or off with the F8 key.

The right part (the visualisation pane) contains the drawing of the current construction. Above the drawing is the menu line of the editor. Below the menu line there is a very important (red coloured) information line. Keep an eye on it - it tells you what is going on and what is expected of you (additional help on how to use the commands can be found in the Help section of the information pane, if the help for commands is activated). On the right of the drawing pane there is a toolbar with buttons for the commands that are frequently used.

Figure 1

1.2. A first example

The following example gives you an idea on how to make constructions in OK Geometry. We construct a (dynamic) right triangle with the inscribed circle in it. Furthermore, we shall label the points in which the circle touches the sides of the triangle. Here are the steps to follow.

1. Enter the Edit mode by pressing the Sketch button in the main menu bar. The editor's menu appears above the visualisation area. (If the current construction is not empty use the File /New project command in the main menu.)
2. To draw a right triangle, select (click) the command Advanced/Shapes/Right triangle, then OK.
3. The line below the menu (the information line) instructs you to pick three points (vertices): First a vertex at an acute angle, then the vertex at the other acute angle, and then the vertex at the right angle. The position of the third vertex is automatically corrected so that the triangle is right.
4. Label the vertices of the triangle. A simple way (but not the quickest) is to click on the Label vertex button in the editor's toolbar (click on the button with an underlined letter on it). Then click on the vertices in the desired order. Immediately after a label is set you can change the position of the label with the mouse-wheel.
5. To draw the inscribed circle, select in the editor's menu the command Circle/Circle 3obj or, equivalently, right click on the circle button in the editor's toolbar and select the circle with digit 3 inside. This command draws a circle that touches or passes through three given objects (lines, points, circles).
6. Click on each of triangle's three sides. After you pick the first side the whole triangle is emphasised since the triangle was constructed as one object). A circle appears.
7. There are several circles that touch the three baselines of the sides (from inside or outside the triangle). To access them click repeatedly the Alt button in the editor's toolbar. Click Alt several times (or use the mouse wheel) until you obtain the desired solution.
8. Finally, to draw the points where the circle touches the sides, select the command Point/Point or click on the Point button on the editor's toolbar. Click on the three points of touch. These points are automatically labelled.
9. The resulting figure is a dynamic construction. To drag the free points, click for a while on any free point (A, B, C) and then drag the selected point. Alternatively, you can use the command Action/Drag point/parameter or click on the 'arrow' button in the toolbox on the right and then drag a free point.

The construction is complete and ready to be analysed (Figure 2) - simply click on the main menu button Observe. Among other properties, the analysis will point to the fact that the lines AD, BE, and CF meet at the same point (a well know fact to anybody who has heard of Gergonne point).

Figure 2

2. General guidelines

Most commands of the OK Geometry Sketch Editor are simple to use and there is no reason to study them in detail on the first reading. However, we strongly recommend that you read the following general guidelines for specific features of the OK Geometry Sketch Editor.

With the editor you can edit points, lines, line segments, polylines (polygon lines), circles, arcs, conics, transformations, and numerical parameters. Polylines are chains of line segments. Segments are therefore a special case of polylines. Note that OK Geometry does not work with rays and vectors.

2.1. How to find command

To enable fast and efficient construction, the OK Geometry Sketch Editor contains many commands. The commands can be accessed via the toolbox in the right part of the editing pane (note that more buttons can be accessed by right-clicking on buttons, see Section 3), or via commands in the menu line. Although the commands and the positions of the commands in the menu follow a logical order, it can be difficult for a beginner to find them and use them. To overcome this, you can use the Search commands help in the Help menu or press the F1 key on the keyboard. We will explain this with an example. Suppose you want to obtain a line that is tangent to two given circles. In the Search command prompt write an approximate name or word that refers to the command, for example tangent. In the form that appears, under the section Commands you will find a list of commands that refer to your prompt. A click on each of the commands gives you (Figure 3)

- the position of the command in the menu,
- the parameters required by the command,
- important notes regarding the use of $\boldsymbol{A l t}$ and \boldsymbol{A} chor modifiers (see Sections 2.5 and 2.7),
- a description of the command,
- a pictorial explanation (click on the >>> sign for more illustrations).

In our case, we find that the right command is Line: 2 objects. A right click on the Description part activates the command (when Sketch mode).

Figure 3

2.2. The blue dot

The blue dot in the upper left part of the drawing area indicates whether the construction is displayed in exact or perturbed mode. It also enables switching between the two modes and a quick way of setting some drawing parameters.

		Displayed construction	Left click on blue dot	Right click on blue dot
Perturbed mode		One of the perturbed variants of the original construction.		A shortcut for configuring frequently used sketch related
Exact mode	0	The original construction (e.g. as imported from a system).	Switch between exact and perturbed mode	of filling areas, font of point labels). You can also set the level of the displayed help for the construction commands.

Note. Internally, all observations are made in the perturbed mode. On the other side, all exports of constructions are made in the exact mode, irrespective of the status of the blue dot.

Note. Some constructions cannot be displayed in exact mode.
In general, it is rather irrelevant which mode is active. In the exact mode you see horizontal and vertical lines as horizontal and vertical. Furthermore, in the exact mode there is a mechanism that makes it easy to construct visually horizontal and vertical lines (though they need not be horizontal or vertical by construction). On the other hand, in the perturbed mode the position of all free points often changes slightly.

2.3. Command first, then parameters

Actions of the Sketch Editor are executed by first activating the appropriate command and then pointing to the involved objects or entering the data. The active command (together with required actions) is displayed in the information line just below the editor menu. It is a good practice to constantly check the information line, especially when you learn to use the program. Most commands remain active until either another command is activated or Escape key is pressed. For example: To draw some points first activate the command Point/Point and then click on the desired positions of one or more points. The execution of a command can be cancelled at any time by pressing the Escape key (Esc) on the keyboard.

2.4. Only labelled points count

The label of a point consists of a single letter optionally followed by a numeral and/or apostrophes, for example: A, A2, A', $k 3, u 1^{\prime \prime}$. Labels consisting of more than one character are also allowed, but must be written in brackets where necessary, e.g. (AE) for AE. Label only points that are potentially relevant for the analysis. Labels are case sensitive. The characters x, y, z are not allowed as labels.
Note. Other objects (lines, circles, etc.) can also be labelled - either by writing the name immediately after the object is created or later using the text command (seeAction|Mark|Text command). However, when analysing the construction, only labels of points are taken into account, all other labels are ignored Note. If a command results in a construction of a single point, this point is usually labelled automatically. It is possible to write the label of an object immediately after it is constructed. The position of the label can be changed using the mouse wheel or the Anchor command. Of course, the label and the position of the label can also be changed later with appropriate commands.

2.5. Alternative solutions

Use the Alt button on the editor's toolbar ${ }^{1}$ (possibly together with the mouse wheel) for alternative results of construction operations that give rise to two or more solutions. In such cases a red Alt button appears on the editor's toolbar. Only one solution is displayed at time. By pressing the Alt button repeatedly, you can access to alternative solutions. Note that some alternatives may be 'empty' or duplicated. For example, the task of constructing a circle that is tangent to three given circles usually has several solutions. Only one solution is drawn at a time. By repeatedly pressing the Alt button the desired solution is obtained. For convenience, Alt button executes also analogies of some commands (e.g. parallel/perpendicular line). Figure 4 shows a simple example (line tangent to two circles) with several possible solutions including the radical axis. Using the Alt button it is possible to choose the desired solution.

[^0]

Figure 4

2.6. Safe points

Safe points is a feature that determines the behaviour of a point located on an object, such as a line segment, a segment of a polyline, a circular arc. During the creation of a point the Safe points feature can be set ON or OFF. If Safe points is set to ON, line and arc segments in a construction of a point are treated as the corresponding base line or circle. For example, a free point on a line segment is treated as a point on the baseline of the line segment, so that the point can be dragged along the line outside the line-segment. The intersection point of two line segments, constructed as intersection under Safe points ON, is constructed as the intersection of the corresponding baselines. We illustrate this feature with two examples (Figure 5).

Construction of points
G was defined as the intersection of segments with Safe points OFF. H was defined as the intersection of segments with Safe points ON. When A is dragged so that the segment AB does not intersect the polyline CDE, the point G 'disappears'. Since H was constructed with Safe points ON, H is positioned at the intersection of the corresponding baselines of the segments AB and CD. (Note. The dotted lines are displayed here only for evidence.)

Figure 5
Whether a point is constructed with Safe points ON or OFF depends on the type of intersection or linking you need. The ON option is more robust in that the intersection of two line segments always exists (unless the segments are parallel).

2.7. The anchor command

The Anchor command and the corresponding \pm button in the Sketch Editor's toolbar change the visual aspect of various objects.

For example, the label of a point is placed by default above to the right of the constructed point (Figure 6). To change the position of the label with respect to the point, use repeatedly the Anchor command on the point (or its label). A faster way for repeating is to scroll the mouse-wheel.

Figure 6
Another important example is the visualisation of angles (Figure 7). A pair of intersecting lines (or 3 points) gives rise to several angles. To choose between them you can use the Anchor command repeatedly at any time, possibly followed by scrolling mouse-wheel.

Figure 7
For a comprehensive overview of object visualisation, see Section 6.
The following table presents the effects of the Anchor command on the visual representation of geometric objects.

Object	Effect
Point (label)	Changes the position of the label with respect to the point.
Angle	Sets a different angle with the same base-lines as the original.
Arrowed segment	Changes the position and size of the arrows.
Text/Marker	Changes the position of the text/marker with respect to the reference point of the text.
Line	Changes the representation of the line: it can extend over the entire displayed area or only over the displayed points on the line.
Line segment	Changes the representation of the segment: it can extend between the edge points of the segment or somehow over its edge points.
Arc	Changes the representation of the arc: it can extend between its edge points or somehow over its edge points.
Congruence sign on segment or arc	Changes the number of bars on the congruence sign. Filled polyline, circle
In case of solid fill, changes the fill level (1-5) of the polygon or disk, and thus sets order of superposition of the filled objects. The command has no effect if the polyline or circle is not filled or the fill is not solid.	

2.8. Geometric transformations and numeric parameters

Geometric transformations and numeric parameters are considered as explicit objects. For example, you can define a rotation around a point to be an object by itself. You can apply this transformation to any object at any time.

The used numeric parameters and transformations are shown on the left of the display. Numeric parameters can be assigned a desired value or can be the result of a measurement. Numeric parameters can be 'dragged'. In expressions you can refer to a parameter named 'mypar' as [mypar] (or simply click on the parameter in the Transformations \& Parameters list).

Figure 8
When we define a transformation, we can immediately apply it to an object. The constructed transformation remains 'visible' in the Transformation \& Parameters list (Figure 8). A right click on a transformation in the list reveals possible actions with that transformation. Most actions are selfexplanatory, so we mention only two of them. Transform object transforms accordingly the object you afterwards. Transform object+ transforms successively the objects as you click on them.

2.9. Commands on polylines

Commands that apply to line segments have, when applied to a polyline, two or three variants. Such commands can be applied to one segment of the polyline, to each segment of the polyline, or with respect to the entire polyline. For example: The command Midpoint when applied to a polyline has three versions:

1. you can create the midpoint of the segment you pointed to,
2. you can create the set of midpoints of each segment of a polyline,
3. you can create the midpoint of the entire polyline (i.e. at the point that splits the polyline into two parts of equal length).

3. Toolboxes

3.1. Visibility and current style information

On the upper right of the Editor window there is a small toolbox with visibility indicators (switches) and for setting the style (colour, widths, shape of lines/points, etc.) of the drawn objects.

Button	Command
Cycl	Cyclic mode ON/OFF switch and indicator (Only in Plus mode). If the cyclic mode is ON, the program executes cyclic constructions on triangles. (See OK Geometry Plus documentation for details.)
Safe	Safe point button ON/OFF switch and indicator. See Section 2.6.
H B T N X M	Visibility ON/OFF switches and indicators. (See OK Geometry Basic reference.) When the \mathbf{H} button is active, the hidden objects are displayed as if they were not hidden, otherwise hidden objects are not displayed or are displayed with a thin red dotted line (in Show hidden/Hide command). When the \mathbf{B} button is active, the bleached objects are displayed as if they were not bleached. When the \mathbf{T} button is active, the texts in the drawing are visible. Note that this does not affect the visibility of points' labels. When the \mathbf{N} button is active, the transparent objects are visible (coloured in yellow), otherwise they are not displayed. When the \mathbf{X} button is active, the auxiliary lines (related to angles) are visible, otherwise they are not. When the \mathbf{M} button is active, the markers are visible, otherwise they are not visible. When the ? button is active, the unknown objects of a construction are highlighted. (See section Advanced observation in OK Geometry Plus reference.)
\square	The rightmost indicator shows the style of the new objects to be created in Sketch Editor. To change the style of new objects, click on this indicator and set the styles on the form that appears.

3.2. Sketch Editor toolbox

The editor's tool bar contains the frequently used commands. If two or more buttons are shown together on the table below, use the right button to select among them.

		Perpendicular segment. Constructs a perpendicular connection from a point to an object. Use the Anchor command to change the mode of representing a line. See Section 6 for details.
		Polyline. Constructs a polyline (a chained sequence of segments).
《		Angle. Constructs an angle, given three points (ray, vertex, ray) or two baselines. Angles are positively oriented. Use the Anchor command to select among angles with the same baselines. See Section 6 for details.
		Congruence. Puts/clears a congruence mark (with 1,2,3,4 or 0 lines) on an object. Use the Anchor command to change the type of congruence mark. See Section 6 for details.
		Mark area. Toggles on/off the fill state of the polygon or circle. To select the fill (or border) colour, use the command Restyle object. Use the Anchor command to set the fill level of the area (in case the solid fill is used). See Section 6 for details.
		Mark arrow. Adds an arrow to the displayed line segment. Use the Anchor command to change the position and size of the arrow. See Section 6 for details.
Tx	(1)	Text. Places a text on the plane. Texts can be attached to objects. Texts are not geometric object but in many respects they behave as labelled points. Use the Anchor command to change the position or the text wrt. its reference point. Section 6 for details.
		Marker. Place a marker on the plane or add a ballooned comment to a geometric object. Markers consist of simple marks with optional information in a balloon. Markers are not geometric object but in many respects they behave as labelled points. Use the Anchor command to change the position or the mark wrt. its reference point. By marking an existing object you add to the object a ballooned information, which appears only when the mouse pointer is on that object.

Alt	Alternative results. Selects among alternatives. If pressed (repeatedly), displays alternative results of certain commands. The same effect is achieved by scrolling the mouse wheel. Alternatives refer to different solutions or to analogous commands (e.g. parallel and perpendicular lines). See Section 2.5.
\pm.	Anchor. Changes a visual aspect of objects. The button can be pressed repeatedly. The same effect is achieved by scrolling the mouse wheel. Changes the position of the label of a labelled point. Changes the selection of angle between intersecting lines. Changes the extensions in represented lines, lines segments, arcs. Changes the direction of arrow on an arrowed segment. Changes the congruence sign on a segment or arc. Changes the position of a text wrt. its reference point. Changes fill level of a polygon or circle (in case of solid fill).
?	Mark/unmark object as unknown. This button is visible in the OK Geometry Plus only. For more information, see the Advanced query section in the OK Geometry Plus reference manual.
\cdots	Drag. Drags a free point or a numeric parameter.
[]	Zoom fit. Press repeatedly for various zooming options: view all objects; view all displayed points; view all labelled points; view user (saved) view.
\pm	Pan. Moves the whole configuration.
4	
-	Redo. Redoes the last undo command. Can be pressed repeatedly.
\otimes	Redefine object. Pick the object to be redefined and the set the new construction of the object.
4	Set cyclic objects. This button is visible in the OK Geometry Plus only. It declares 3 objects as cyclic with respect to the reference triangle.
Δ ?	Analyse object in the reference triangle. This button is visible in the OK Geometry Plus only. For more information, see the Triangle analysis section in the OK Geometry Plus reference manual.
B	Snapshot-Archive. This button is visible in the OK Geometry Plus only. It adds the current construction to the archive. For more information, see the Triangle analysis section in the OK Geometry Plus reference manual.

Some examples of geometric constructions are described in detail in Section 5. All commands are explained in detail in Section 4.

4. Description of the menu commands

The commands of the Sketch Editor are grouped in columns. Note that some columns and some commands in columns are present in Plus mode only. These commands are explained in the OK Geometry Plus reference manual.

4.1. Sketch Editor: menu organisation

Action commands	Commands for manipulating geometric objects: drag points or parameters, label vertices, hide and delete objects, undo commands, zooming.
Point commands	Commands for placing and constructing points and sets of points.
Line commands	Commands for constructing lines, line segments, and polylines. Note that OK Geometry does not explicitly use rays and vectors.
Circle commands	Commands for constructing circles, circular arcs, conics, bicubics.
Number commands	Commands for numerical operations: measure geometric quantities, declare numeric parameters, calculate expressions, compose conditions.
Transformation commands	Commands for defining transformations and commands for applying transformations to objects. A transformation is treated as an explicit object. Once defined, it can be applied later to various objects.
Advanced	
commands	Commands for complex operations: construct frequently used shapes; create a locus of point; check conditions; create implicit constructions; and create optimisation based constructions.
(Special	
commands)	Commands from this group are available in Plus mode only. The group includes a set of commands related to triangle geometry and quadrilateral objects. For more information, see the OK Geometry Plus reference manual.
(Generic	
constructions)	Commands from this group are available in Plus mode only. The group includes a set of commands for creating and managing generic constructions. For more information, see the OK Geometry Plus reference manual.

4.2. Action commands

Command	Purpose	Comments
New project	Clear the current project and the current construction.	
New construction	Clear the current construction.	Note. The project (i.e. all icons) remains unchanged.
Drag point/parameter	Drag free points Dynamically change the value of a parameter	Only free (non-constructed) points can be dragged. Note. A long (continuous) click on a free point automatically calls the dragging command. It is possible to 'drag' numeric parameters that were declared as numbers (and not obtained as expressions or as measurements). To change the value of a parameter, activate the drag command and then click a numeric parameter. In the form that appears, set the minimal and maximal value of the parameter as well as the incremental step. Then click on Apply interval. Use the slider to change the value of the parameter.
Hide	Hide objects	Click on the object you want to hide. Hidden objects are taken into account in the construction, but they are not visible and they are not observed. To unhide objects, use the command Action/Show hidden. Note that it is not possible to hide parameters and transformations.
Show hidden	Show hidden objects and (un)hide objects	When active, all objects (displayed and hidden) are shown. The hidden ones are coloured red. Clicking on objects changes their status from hidden to displayed and vice versa.
Delete	Delete an object together with all objects that depend on it	

Redefine object	Redefine an object and modify it accordingly the depending objects.	Pick the object to be redefined. Then define a new object in place of the redefined one. Example. Suppose you draw a line $A B$. After several construction steps involving the line $A B$ you find out that $A C$ should be used instead of $A B$. To correct the situation, redefine the line: - Select the command Redefine object - Click on the line AB. The line turns blue and dotted. - Select the command Line 2pts - Click on the points A and C. The situation is corrected.
Visually align 2 points	Visually align two points horizontally or vertically.	The command aligns two selected points horizontally or vertically, whichever is closer. The perfect alignment is visible only in the exact (nonperturbated) view and in exported/printed images. The command causes a switch to the exact view.
Anchor Iabel/angle/text/line	Change the position of label/text/marker wrt. its reference point Change an angle with one with the same baselines Change congruence mark Change arrows on a segment Change the fill level of an area Change the way of representing a line, a segment, an arc	The Anchor button can be pressed repeatedly (the same effect is obtained by scrolling the mouse wheel). Anchor changes the position of the label of a labelled point. Note that labels can also be 'dragged' by a continuous click. Anchor changes the selection of the angle between intersecting lines (there are 8 choices). Anchor changes the size and direction of arrow on an arrowed segment. Anchor changes the position of a text wrt. its reference point. Anchor changes the fill level of a region - this makes sense only when a solid fill is used and the filled regions overlap. Anchor changes the extensions of the represented line: a line can be drawn up to the represented world or it can extend a bit over the visible points on the line. You can set the size of the extension in the Configure/General options/Sketch/Extension of lines. See Section 6 for more information on Anchor command.

Labels\|Auto label	Auto label selected points Unlabel points	The point you click on is labelled with the first available label (as shown in the editor's toolbar). If the selected point is already labelled, then the label is deleted. To change the starting label, press the Alt-S or use the command Actions/Labels/Label vertex.
Labels/Label vertex	Label selected points with specified labels	Click on the point you want to label. Then write the desired label of the point. The label should comply with the format of labels (see General guidelines).
Labels/Clear label	Delete the label of selected points.	Click on the point to be unlabelled.
Labels/Set next label	Set new label for auto-labelling	The command initiates the starting label for the command Labels/Auto label. Alternatively, you can use the Alt+S key.
Labels/Label all	Auto label all displayed points	All displayed unlabelled points are labelled with the first available label in the same order as they were defined.
Labels/Clear all labels	Clear all labels	The labels of all points are deleted.
Mark/Mark angle	Mark an angle	To mark an angle, select: 1. a point on the ray; 2. the vertex of the angle; 3 . a point on the other ray. Alternatively, select: 1 . one of the baselines; 2. the other baseline of the angle. A positively oriented angle is marked. Note. Use the Anchor command (or scroll the mouse wheel) to mark other angles with the same baselines. See Section 6 for more details. Note. The radius and the type of the arc denoting the angle are set automatically. To modify the radius and the type of angle mark, right click on the blue dot or use the command Configuration/General options/Sketch. Note. The angle marks can be limited to angles less than 90, 180 or 360 degrees. To set this, right click on the blue dot or use the command Configuration/General options/Sketch.

Mark/Mark area	Mark or unmark the interior of a polygon	The command toggles the fill state of a polygon or circle. Note. There are several ways of hatching (filling) the area. To select the type and density of hatch, right click on the blue dot or use the command Configuration/General options/Sketch. Note. Polylines need not be closed in order to be (area) filled. Note. The command Restyle object provides a better way to colour the interior and border of a circle or polygon.
(Mark/Toggle Unknown status)	The command is available in the Plus mode only.	The command toggles the Unknown status of objects. The command appears in OK Geometry Plus only. This command is used to mark objects that are considered as Unknown (non-given). Object marked as Unknown are coloured in pale-green. Such objects are not considered in the query, unless they are the object of query. A typical use of this function is the study of construction problems. In a construction we can query how can an Unknown object be obtained from known objects. For more information, see the Advanced query section in the OK Geometry Plus reference manual.
(Clear all Unknown)	The command is available in the Plus mode only.	The command clears the Unknown flag for all objects. The command appears in OK Geometry Plus only. For more information, see the Advanced query section in the OK Geometry Plus reference manual.
Mark/Mark arrow	Mark one or two arrows on a line segment	The command marks/unmarks one or more arrows a line segment. Note. Apply the Anchor command repeatedly (or scroll the mouse wheel) for various alternatives of placing arrows. See Section 6 for more information. Note. Adding arrows affects a line segment only visually, not functionally (i.e., arrowed segment does not function as a vector).

Mark/Mark congruence	Mark a line segment or angle with a congruence sign	The command places a congruence sign on a line segment or an angle. Apply repeatedly (or scroll the mouse wheel) to select among different congruence marks. Note. You can also use the Anchor command to change the type of congruence sign. See Section 6 for more information.
Mark/Marker	Create ballooned comments to displayed objects	A click on a displayed object allows you to create a comment to that object. The comment is shown in a balloon only when the mouse pointer is on the object. Comments to objects are also shown in the Commands/Construction steps command.

Mark/Detour point	Make an object to visually avoid a given point	The detour visually emphasises the fact that a point does not lay by definition on an object. Detour can be useful when presenting hypothetical situations ("Assume that the line does not pass through A ...") or facts to be yet proved ("We do not know yet if the line passes through A, we need to prove this."). In order to detour an object away from a point: 1. pick the object; 2. pick the point to be avoided, 3. enter the radius of the detour circle. Note. You can use the Alt command to change the side of the detour. Note. The radius of the detour can be set in Configuration/General options/Sketch.
Mark/Detour segment	Make an object visually avoid a given point along a segment	The detour only visually modifies a displayed line or circle along a segment. This command serves the same function as Detour point, only the presentation is a bit different. Detour can be useful when presenting hypothetical situations ("Assume that the line does not pass through A ...") or facts to be yet proved ("We do not know yet if the line passes through A, we need to prove this."). In order to detour an object along a segment: 1. pick the object; 2 . pick the beginning of the detour; 3 . pick the end of the detour, 4. enter the magnitude of the detour. The picked points become hidden. Note. Use the Alt command to change the side of the detour.
Mark/Text	Place a simple text in the construction	The command is used to place simple text in the dynamic construction or to modify a previously included text. The text can spread over several lines. Note. It is not granted that non-standard characters are correctly exported/printed. Note. To insert a dynamic value of a parameter, put the parameter name in brackets. For example: if Length_DA is the name of a parameter, you can insert a text like "Length of DA is [Length_DA]". Note. You can also use the Anchor command to change the position of the text wrt. its reference point.

Background	Set the background of the construction	The background can only be a self-standing imported image. If geometric objects are added on the background image, be sure to use the exact (non-perturbed) mode for displaying objects.
Background/Background from file	Import background from an image file	The background can only be a self-standing imported image to be displayed. If geometric objects are added on the background image, be sure to use the exact (non-perturbed) mode for displaying objects.
Background/Background from clipboard	Import background from the image in the clipboard	The background can only be a self-standing imported image to be displayed. If geometric objects are added on the background image, be sure to use the exact (non-perturbed) mode for displaying objects.
Background/Clear background	Clear the background	
Scenes...	Manage the scenes of the current construction	The command displays a self-explaining form, with which emphasis/bleach/transparency attributes of objects can be defined for each scene of the current construction. See the section Scenes in OK Geometry Basic reference.
Emphasise/Toggle bleach	Toggle the bleach status of objects	A bleached object is less visible (fainted). Note. The bleaching level can be set with Alt+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise\|All bleach	Bleach all objects	A bleached object is less visible (fainted). Note. The bleaching level can be set with Alt+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Unmark all bleach	Un-bleach all objects	A bleached object is less visible (fainted). Note. The bleaching level can be set with Alt+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.

Emphasise/Toggle emphasis	Toggle the emphasis status of object	An emphasised object is highlighted in a controlled way. Note. The emphasis level can be set with Shift+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Unmark all emphasis	Clear emphasis attribute of objects	An emphasised object is highlighted in a controlled way. Note. The emphasis level can be set with Shift+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Toggle transparent	Toggle the transparency status of object	A transparent object is not visible, but is taken into account in the construction and also in the observation. The Sketch Editor shows transparent objects either coloured yellow or transparent. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Unmark all transparent	Declare all objects as nontransparent	A transparent object is not visible, but is taken into account in the construction and also in the observation. The Sketch Editor shows transparent objects either coloured yellow or transparent. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Make everything transparent	Declare all objects as transparent	A transparent object is not visible, but is taken into account in the construction and also in the observation. The Sketch Editor shows transparent objects either coloured yellow or transparent. Note. The command affects only the ground scene. Use Scenes... command to modify other scenes of the construction.

Restyle objects	Set the visual appearance of picked objects.	In the form that appears, select the width, colour, and shape of line/point. It is possible to change only some attributes and leave others unchanged. In the form, set the appearance parameters; then click on the objects you want to apply the appearance parameters. For polygons you can specify whether the selected colour refers to the border line or to the filled interior. There are several ways of hatching (filling) the area. To select the type and density of hatch, right click on the blue dot or use the command Configuration/General options/Sketch. The More command allows efficient ways of simultaneously restyle several objects. It is possible to restyle at once all objects of a given colour, or all objects of a given type and pattern, etc.
Undo command	Undo the last command	The command can be repeated several times.
Redo command	Undo the last undo command	The command can be repeated several times.
Zoom/Zoom in [Ctrl+Plus]	Zoom in with respect to the centre of the displayed area	Note. To achieve a similar effect, use Ctrl+Mousewheel.
Zoom/Zoom out [Ctrl+Minus]	Zoom out with respect to the centre of the displayed area	Note. To achieve a similar effect, use Ctrl+Mousewheel.
Zoom/Pan view	Drag the view area to the desired position	Note. To achieve a similar effect, use a long (continuous) click on an empty space in the construction.
Zoom/Zoom view	Mark the region to be zoomed-in	Define (by dragging) the rectangle, which becomes the new view area.
Zoom/Zoom save [Ctrl+End]	Save the current view	The saved view can be accessed by repeatedly pressing the [] button in the Sketch Editor tool box.

Zoom/Fit points/objects [Ctrl+Home]	Zoom to various ways of showing all points/objects	Sets the viewed area so that all visible points are displayed. If repeated, then the viewed area contains in turn: 1. all labelled points; 2 . all visible points; 3. all visible objects; 4. the user-saved view area.

4.3. Point commands

Command	Purpose	Comments
Point	Draw a point Draw a point on an object Draw an intersection point	A click on an 'empty' region creates a 'free' point. A click on an object (e.g., a line, a circle) creates a 'free' point that is attached to this object (if Safe points is OFF) or to the corresponding base object (if Safe points is ON). (See the Safe points command.) A click o the intersection of two objects creates the intersection point. (See also Intersections for the set of all intersection points of two objects.)
Point on object	Draw a point that is attached to an object	A click on an object (e.g., a line, a circle) creates a 'free' point that is attached to this object (if Safe points is OFF) or to the corresponding base object (if Safe points is ON). (See the Safe points command.)
Intersection	Construct a point as an intersection of two objects	Click on two objects, one after the other. The command creates the intersection point that is closest to the (first) clicked position. Note. If one of the intersected objects is a circle or a conic, you can use an alternative construction: - first use the command Intersections that creates all intersection points; - label the intersection point you are interested in (and then eventually hide the other intersection point). Such construction behaves better under Advanced observation (In Plus mode) or when dragging the intersected objects. Note. If one of the objects is a conic, the other object must be a line.
PointXY	Create a point with given fixed coordinates	Enter the coordinates of a point. Such a point cannot be dragged. It is considered a fixed point also in the observation analysis.

Safe points	Toggle the Safe modality of treating line segments and arcs. (See 2.6.)	The status of the Safe points is shown by the Safe indicator in the upper right part of the display. Clicking on the indicator changes the status of Safe points. The Safe points mode affects intersection and dragging operations. If Safe points is OFF then intersections and dragging operations work as intuitively expected. If Safe points is ON then line segments, segments of polylines, and circular arcs are interpreted as base-lines or base-circles. This option is more robust and therefore should be preferred. Example. If a point is created as the intersection of two segments (with Safe intersection ON), then the point is defined as the intersection of the corresponding base-lines. Such intersection point exists even if the two segments (when dragged) do not intersect each other. Example. If a point is linked to a line segment (with Safe intersection ON), the point can be dragged along the base-line of the segment.
Midpoint	Construct the midpoint between two points Construct the midpoint of a line segment or an arc Construct the point at halfway along a polyline Construct the midpoints of all segment of a polyline (See 2.9)	Pick two points or a segment, or an arc or a polyline.

Divide ratio	Construct the point along an arc, a segment or a polyline that divides it in length in a given ratio Construct points on a polyline that divide each of its segment in a given ratio (See 2.9)	Pick two points or a segment, or an arc or a polyline. Then enter the desired ratio. The ratio a / b or $a: b$ divides a segment in ratio $a: b$. For example, if the segment $A B$ is divided in a ratio $1: 2$, the point C is created, which lies at $1 / 3$ of the distance from A to B.
Centre of circle	Construct the centre of a circle or circular arc	
Nearest point	Construct the point on a given object that is closest to a given point (See 2.9)	Pick: 1. an object (line, line segment, polyline, arc); 2. a point. The command constructs a point on the object (1) that is closest to the point (2). Note. If the selected object (1) is a polyline, then you can obtain the nearest point on the shown segment, on each segment, or on the entire polyline.
At length	Construct a point on the object at a given arc length (See 2.9)	Select: 1. an object (line segment, polyline, arc); 2. a positive number. The command constructs a point on object (1), so that the arc length from the beginning of the object to the constructed point is equal to (2). Note If the selected object (1) is a polyline, then you can obtain points at a given length on the shown segment, on each segment, or on the entire polyline.
Triangle 4 centres	Construct the 4 classical triangle centres	In the form that appears, select the type of triangle centre. Then, either pick a triangle (as a polyline) or its three vertices.
Harmonic conjugate	Construct the harmonic conjugate of a point with respect to the reference points.	Select: 1. the two reference points; 2. the point to be harmonically conjugated. Note. If the point to be conjugated is not collinear with the reference points, it is replaced with its projection onto the line through the reference points.

| Vertices | Create the set of
 vertices of a polyline
 Conic points
 Construct the
 characteristic points
 of a conic.
 vertices on it. Use this command to obtain all vertices |
| :--- | :--- | :--- |
| Pick a conic or 5 points on the considered conic. The | |
| command constructs a set of points. The number and | |
| the meaning of the constructed points depend on the | |
| type of the considered conic. | |
| If the conic is an ellipse then 7 points are constructed: | |
| the centre, the two focuses and the endpoints of both | |
| axes. | |
| If the conic is a hyperbola then 5 points are generated: | |
| the focuses, the centre and the two intersections of the | |
| hyperbola with the axis. | |

Intersections/ Intersections	Construct the set of all intersection points of two objects	Select two objects (circles, lines, arcs, polylines, conic). The command constructs the set of all intersection points of the two objects. Note. If one of the objects is a conic, the other one should be a line.
Intersections/ Nearest intersection	Construct the intersection point of two objects that is closest to a given point	Select: 1. two objects (circles, lines, arcs, polylines, conic); 2. a point. Note. If one of the objects is a conic, the other one should be a line.
Intersections\| Farthest intersection	Construct the intersection point of two objects that is furthest away from a given point	Select: 1. two objects (circles, lines, arcs, polylines, conic); 2. a point. Note. If one of the objects is a conic, the other one should be a line.
Grids/Uniform divide	Construct a pattern of equally spaced points along an object or between two points (See 2.9)	Select: 1. two points or a line segment, arc, or polyline; 2. the number of segments (not points!) to be generated. If the selected object (1) is a polyline, then the number of segments between points refers to either along the entire the polyline, along each segment of a polyline or along just one segment of the polyline.
Grids/Rectangular grid	Construct a grid of points in the form of a parallelogram	Select: 1. the lower left corner of the grid; 2 . the lower right corner of the grid; 3 . the upper left corner of the grid; 4. the number of points in the horizontal direction; 5 . the number of points in the vertical direction.

Grids/Circular grid	Construct a grid of points in the form of a circular segment	Enter: 1. the centre of the circle; 2. one corner of the grid; 3. the opposite corner of the grid; 4. the number of points in radial direction; 5. the number of point in angular direction.

4.4. Line commands

Command	Purpose	Comments
Line: 2 points	Construct a line through two points	Select two points. You can either point to an existing or to a non-existing point - in the latter case a new point is implicitly defined. Use the Anchor command to change the mode of representing a line. See Section 6 for details.
Line: point + angle	Construct a line with a fixed inclination	
Segment	Construct a line segment given its endpoints	Select the two edge points of a line segment to be constructed. You can either point to an existing point or to a non-existing point - in the latter case a new point is implicitly defined. Use the Anchor command to change the mode of representing a line segment. See Section 6 for details.
Perpendicular segment	Construct a perpendicular segment to a line or to a circle from a point Create a segment of a specified length	Select a point, then an object (line, segment or circle). A perpendicular segment to the object from the selected point is constructed. If you select a point and enter an expression, then a segment of the specified length is created. Use the Anchor command to change the mode of representing a line segment. See Section 6 for details.

Polyline	Construct a polygonal line given its vertices	Click successively to the vertices of the polygonal line. You can either point to existing points or to non-existing points - in the latter case, new points are implicitly defined. To draw another polygonal line, click on the Polyline command again. To draw a closed polygon, simply end at the starting vertex. There is no indication whether a polyline is closed or whether it should be interpreted as a polygonal region. Note. Polygons, created as closed polylines, can have selfintersections. This holds also for quadrilaterals. However, in emphasized quadrilaterals (see the Emphasis command) the order of vertices is automatically adjusted so that there are no self-intersections. Note. If the Safe points is ON, the displayed segments of polyline behave as a lines in some situations.
Parallel line	Construct a line that is parallel to a given line and passing through a given point	Pick a line and a point or vice versa. Note. To obtain a perpendicular line, press the Alt button in editor's toolbar (or scroll the mouse-wheel).
Perpendicular line	Construct a line that is perpendicular to a given line and passing through a given point	Pick a line and a point or vice versa. Note. To obtain a parallel line, click on the Alt button in editor's toolbar (or scroll the mouse-wheel).
Bisector	Construct the bisector of a line segment	Pick the endpoints of a segment or pick a line segment.
Angle bisector	Construct the angle bisector See 2.5.	Select two lines. The bisector of the resulting angle is displayed. To obtain the alternative solution, click on the Alt button in the editor's toolbar (or scroll the mousewheel). Or, pick three points: 1. a point on a ray; 2. the vertex of the angle; 3 . a point on the second ray.
Line: 2 objects	Construct a line defined by two selected objects in terms of passing through points, being tangent to circles or conics, being parallel or	Select two objects (points, lines, circles, conics). A line defined by the two objects is drawn. Usually there are two or more alternative solutions. To obtain them, click on the Alt button in editor's toolbar or scroll the mouse wheel. Note. This command comprises most of the line

| perpendicular to a line,
 being the radical axis of
 two circles | commands. The resulting line is defined by two objects
 and the relations 'passing through', 'parallel with',
 'tangential to', 'radical axis'.
 With this command and the mouse wheel you can, for
 example, construct:
 a line through 2 points;
 a line tangent to 2 circles;
 a line parallel or perpendicular to a given line and
 touching a given circle;
 the radical axis of two circles;
 a line passing through a point and touching a conic. |
| :--- | :--- | :--- |

4.5. Circle commands

Command	Meaning	Comments
Circle: centre + point	Construct a circle given its centre and a point on its circumference.	Point to: 1. the centre of the circle; 2. a point on the circumference. You can either point to existing points or non-existing points - in the later case, new points are implicitly defined.
Circle: centre + radius	Construct a circle given its centre and the numerical value of the radius.	Set: 1. the centre of the circle; 2. the numeric value of the radius of the circle (either by writing the value on the information line, by selecting a previously defined

		parameter, or by clicking a circle).
Compass	Construct a circle given its radius (as the length of a line segment or the radius of another circle) and its centre.	Set: 1. the radius of a circle by pointing to a line segment, to the endpoints of a line segment or to a circle; 2. the centre of the circle to be constructed.
Apollonius circle	Given two points, construct the locus of points X with a given ratio of the distances from X to the two given points.	Pick: 1. the first point; 2. a point on the Apollonius circle (to be constructed); 3. the second point. Each point X on the resulting Apollonius circle has the property that the ratio of the distances from X to (1) and from X to (3) is equal to the ratio of the distances from (2) to (1) and from (2) to (3).
Circle: centre + object	Construct a circle, given its centre and an object (circle, line or point) that touches the circle. See 2.5	Select: 1. the centre of the circle, 2. the object touching the circle. The object can be a circle, a line or a point. Note. Usually there are more alternative solutions. To get them, click on the Alt button in editor's toolbar or use the mouse-wheel.
Circle: radius +2 objects	Construct a circle with a given radius and two objects (circles, lines or points) that touch the circle. See 2.5.	Set: 1. the first touching object; 2. the second touching object; 3 . the radius of the circle (either by entering the numerical value or by pointing to a circle). Note. Usually there are more alternative solutions. To get them, click on the Alt button in editor's toolbar or use the mouse-wheel.
Circle: central angle + 2	Construct a circle that 'touches' two given objects (circles, lines or points) so that the circle radii to the	Set: 1. the first touching object; 2. the second touching object; 3 . the angle (in degrees) between the radii to the touch-points.

objects	touch-points form a given angle.	Note. Usually there are more alternative solutions. To get them, click on the Alt button in editor's toolbar or use the mouse-wheel.
Circle: 3 objects	Construct a circle defined by three given objects (circles, lines or points) in terms of passing through points or being tangent to circles or lines See 2.5	Pick the three objects (points, lines, circles) that the circle is supposed to touch. Note. Usually there are several alternative solutions. To get them, click on the Alt button in editor's toolbar or use the mouse-wheel. With this command you can, for example: draw a circle that touches two lines and passes through a given point; circumscribe a circle to a triangle (point to three vertices); inscribe a circle to a triangle (point to three sides), draw a circle that touches three given circles; and so on ...
Semicircle	Construct a semicircle given its endpoints.	Pick: 1. the first endpoint of the semicircle; 2. the remaining endpoint of the semicircle. Note. To obtain the alternative solution, press the Alt button in editor's toolbar (or scroll the mouse-wheel). Use the Anchor command to change the mode of representing the semicircle. See Section 6 for details.
Arc 3 pts	Construct a circular arc given its endpoints and a point inside the arc	Pick: 1. an endpoint of the arc; 2. a point inside the arc; 3. the other endpoint of the arc. Use the Anchor command to change the mode of representing an arc. See Section 6 for details.
Arc centre	Construct a circular arc given its centre and two	Pick: 1. the centre of the arc; 2. the first endpoint of the arc (considering the positive orientation of the arc); 3.

	endpoints	the approximate second endpoint of the arc (considering the positive orientation of the arc). Use the Anchor command to change the mode of representing a line segment. See Section 6 for details.
Indicate arc	Construct an arc indicating a circle	Pick: 1. the centre of the arc; 2.the approximate centre of the indicated arc. This command is useful for illustrating constructions with a compass.
Conic 5 points	Draw a conic given 5 points on it.	Pick 5 points on the conic to be constructed. Note. Other constructions of conics are available in menu Advanced/Shapes/Other.
(Cubic 9 points)	Draw a cubic given 9 points on it. (This command appears in Plus mode only.)	Pick 9 points on the cubic to be constructed. Note. Other constructions of cubics are available in menu Special Triangle derived objects, in Special/TrianglePoint derived objects, and in Special/Various constructions

4.6. Number commands

Command	Purpose	Comments
Distance to object	Find the distance from a point to an object (another point, a line, a circle)	Set: 1. The point from which the distance is measured; 2. The object to which the distance is measured (can be a point, a line or a circle); 3. The name of the parameter with the measured value.
Radius of circle	Find the radius of a circle or circular arc	Pick a circle or arc and declare the name of the parameter.

$\left.\begin{array}{|l|l|l|}\hline \text { Angle size } & \begin{array}{l}\text { Find the size of an } \\ \text { angle }\end{array} & \begin{array}{l}\text { First option: 1. Pick a point on the angle's ray; 2. Pick the angle } \\ \text { vertex; 3. Pick a point on the other angle's ray; 4. Enter the name } \\ \text { of the parameter with the size of the angle. } \\ \text { Second option: 1. Pick a base line of a ray; 2. Pick the base line of } \\ \text { the other ray; 3. Enter the name of the parameter that will } \\ \text { contain the size of the angle between base lines. } \\ \text { Note. The angle size is always expressed in degrees. } \\ \text { Note. The measured size of the angle can be positive or negative, } \\ \text { depending on the orientation of the angle. }\end{array} \\ \hline \begin{array}{ll}\text { Length, } \\ \text { perimeter }\end{array} & \begin{array}{l}\text { Find the perimeter } \\ \text { of a circle } \\ \text { Find the length of a } \\ \text { line segment or } \\ \text { circular arc }\end{array} & \begin{array}{l}\text { Note. The measured angle between baselines is always smaller } \\ \text { or equal to the right angle. }\end{array} \\ \text { Point to a circle, a line segment or a polyline. If you select a } \\ \text { pointed segment or to the entire polyline. } \\ \text { Then enter the name of the parameter with the } \\ \text { length/perimeter. }\end{array}\right\}$

(Winding number)	Find the winding number of a closed polyline with respect to a point Find the position of a triangle centre with respect to the triangle Find the orientation of a triangle (The command appears in Plus mode only.)	First option: 1. enter a closed polyline; 2. a point. The command calculates the winding number of the point with respect to the closed polyline. Second option: 1. Enter a triangle as a closed polyline; 2. an integer. The command returns the winding number of the triangle with respect to the ETC triangle centre (second argument). Note. Let p be a simple closed polyline and P a point. The winding number of p with respect to P achieves the following values: - $\quad 1$, if p is positively oriented and P is in the interior region bounded by p; - $\quad-1$. if p is negatively oriented and P is in the interior region bounded by p; - $\quad 0$. if P is in the exterior region bounded by p; - 0.5 or -0.5 , if P is on the polyline p. Note. If the polyline is not closed, the result is meaningless. Note. A simple way to determine the orientation of a triangle is to obtain its winding number with respect to its ETC centre 1 (incentre) or 2 (centroid). The result 1 means positive orientation while -1 means negative orientation.

Value, Expression	Calculate the numerical value or the value of an arithmetic expression	Note the input field that appears in the information line and the OK button next to it. Enter the value of the parameter and then the name of the parameter. If the entry value of the parameter is a number, then the parameter can be dynamically changed (see the command Action/Drag Parameter). The entry value of the parameter can be as well an arithmetic expression, perhaps containing mathematical functions and previously defined parameters. Such parameters cannot be 'dragged'. To insert the value of a parameter in the expression, simply click on the parameter in the Transformations \& Parameters section (on the left pane). Note that the names of the parameters are written in brackets. The expressions should follow the usual syntax rules. Expressions can contain mathematical functions (see the list below). For the power sign use either ^ or ${ }^{* *}$. Here are some examples: 2.785 (a numeric parameter that can be 'dragged') $1 /\left(6.3+2,2^{\wedge} 2\right)$ (an arithmetic expression) sqrt($\sin (60)+\cos (30))$ (expression with functions; use degrees) [par1]/(2+[par3]) (an expression with previously defined parameters)
Compose conditions	Compose conditions	There are several commands for defining geometric conditions (e.g. whether three points are collinear), see the command Check property in section 4.8. With this command you can compose previously defined geometric conditions. The only two allowed operations in the logical expression are logical conjunction (and) and logical disjunction (or). Conditions are composed in the field that appears on the information line. To insert a previously set condition, simply click on the condition in the Parameters section. As mentioned, the expression can contain only: conditions, and, or, parentheses.

(Triangle expression)	Calculate triangle related numerical expression (The command appears in Plus mode only.)	You can use in the expression the well-known triangle-related parameters, e.g. triangle sides, triangle angles, Brocard angle, Conway parameters, etc.
To calculate a triangle related expression: 1. pick the vertices of		
the triangle (in expression they are referred to as vertices A, B, C)		
or click a polyline that defines a triangle; 2. write an expression in		
the form that appears; 3. write the name of the created		
parameter.		
Note. Angles are in degrees.		

Here is a list of the functions that can be used in numeric expressions:

ABS (x)	absolute value of x
ACOS (x)	arcus cosines of x (degrees)
ASIN (x)	arcus sinus of x, in degrees
ATAN (y, x)	arcus tangens of y / x, in degrees
ATANG (x)	arcus tangens of x, in degrees
$\operatorname{CEIL}(x)$	smallest integer that is bigger or equal to x
$\operatorname{COS}(x)$	cosine of x (degrees)
DEG($x)$	express radians in degrees
$\operatorname{EXP}(x)$	exponent function
FLOOR (x)	largest integer that is smaller or equal to x
FROUND (x)	round x to the nearest integer
$\operatorname{GCD}(x, y)$	greatest common divisor of x and y

HYPOT(x, y)	length of hypotenuse in right triangle with sides x and y
IFIX (x)	integer part of x
LCM (x, y)	least common multiple of x and y
LOG (x)	natural logarithm of x
MAX (x, y)	the biggest of x and y
MIN (x, y)	the smallest of x and y
PI	the constant pi
RAD (x)	x degrees expressed in radians
RAND (x, y)	a random number between x and y
REM (x, y)	remainder of x when divided by y
RND	random number between 0 and 1
SIGN (x)	sign of x, can be $-1,0$ or 1
SIN (x)	sine of x (degrees)
SQRT (x)	square root of x
TAN (x)	tangens of x (degrees)

4.7. Transformations commands

Transformations in OK Geometry are treated as explicit objects. You can apply a transformation immediately after its definition or later.

Suppose you want to define a translation that moves a given point A to a given point B. After you select the command Transformation/Translation you are asked to pick the point A and the point B. A transformation called Tran_AB is created and can be immediately applied to an object. You can refer to and apply the transformation later using the command Transform/Transform object.

The transformation is 'visible' in Transformation \& Parameters list. A right click on a transformation in the list reveals possible actions with that transformation. Most actions are self-explanatory, so we mention only two of them. Transform object transforms accordingly the object you click on. Transform object+ transforms successively the objects as you click on them.
$\left.\left.\begin{array}{|l|l|l|}\hline \text { Command } & \text { Purpose } & \text { Comments } \\ \hline \text { Translation } & \begin{array}{l}\text { Define a translation and } \\ \text { apply the translation or } \\ \text { its inverse } \\ \text { Define a glide } \\ \text { translation and apply } \\ \text { the translation or its } \\ \text { inverse }\end{array} & \begin{array}{l}\text { First select a point (origin) and the point where you } \\ \text { want the origin to be translated to. } \\ \text { Note. Press the Alt button at this point if you want to } \\ \text { declare a glide translation. } \\ \text { Then pick the object you want to apply to the (glide) } \\ \text { translation. } \\ \text { Note. Press the Alt button at this point to apply the }\end{array} \\ \hline \text { Reflection } & \begin{array}{l}\text { Define a reflection } \\ \text { symmetry (wrt. a line) } \\ \text { and apply it }\end{array} & \begin{array}{l}\text { Pick a line or two points on the line of reflection. Then } \\ \text { pick the object to be reflected wrt. the line. }\end{array} \\ \hline \text { Rotation } \\ \text { Symmetry } & \begin{array}{l}\text { Define a rotation } \\ \text { symmetry and apply it }\end{array} & \begin{array}{l}\text { Pick the centre of rotation symmetry. Then pick the } \\ \text { object to be transformed. }\end{array} \\ \hline \text { Rotation } & \begin{array}{l}\text { Declare a rotation } \\ \text { around a given point } \\ \text { and apply it or its } \\ \text { inverse to an object }\end{array} & \begin{array}{l}\text { Select: 1. the centre of rotation; 2. the angle of } \\ \text { rotation; 3. the object to be transformed. } \\ \text { Note. Press the Alt button at this point to apply the } \\ \text { inverse transformation. } \\ \text { Note. The rotation angle is oriented and should be }\end{array} \\ \hline \text { Dilatation } & \begin{array}{l}\text { Define a dilatation and } \\ \text { apply it or its inverse to } \\ \text { an object }\end{array} & \begin{array}{l}\text { Select: 1. the centre of dilatation; 2. the dilatation } \\ \text { factor; 3. the object to be transformed. } \\ \text { containing previously defined parameters. }\end{array} \\ \text { Note. Press the Alt button at this point to apply the }\end{array}\right\} \begin{array}{l}\text { inverse transformation. } \\ \text { Note. The dilatation factor can be an arithmetic } \\ \text { expression containing previously defined parameters. }\end{array}\right\}$

Similarity	Declare a similarity transformation and apply the transformation or its inverse to an object Declare a glide similarity transformation and apply the transformation or its inverse to an object	Select: 1. the first origin point; 2. the image of first origin point; 3. the second origin point; 4. the image of the second origin point. Note. Press the Alt button at this point if you want to declare a glide similarity. Then pick the object you want to apply to the (glide) similarity. Note. Press the Alt button at this point to apply the inverse transformation.		
Projectivity	Declare a projectivity of the plane that maps four given points to four given points	Select an origin point and then its image point. Repeat this for the remaining three origin and image points. Then pick the object you want to apply to the projectivity. Note. Press the Alt button at this point to apply the inverse transformation.		
Inverse transformation Compose	Inansformations transformation as the inverse of a previously defined transformation	Define a new transformation as the composition of two previously defined transformations		
Invert a point, line or				
circle wrt. a circle			\quad	Pick: 1. a circle; 2. the object to be inverted (point, line,
:---				
circle).				
The inversion of the object wrt. the selected circle is				
created.				

Transform object	Apply a previously declared transformation or its inverse to an object	Selected a transformation from the list of previously defined transformations. Press OK in the information line (upper right of the display) to confirm the selection. Then select the object to be transformed. Another way to transform objects is to right click on the transformation and use the command Transform object (to transform one object) or Transform object+(to transform several objects). Note. Press the Alt button at this point to apply the inverse transformation.			
Other / Multiply object by grid	Position in various ways copies of a given object along a grid of points	This command places copies of a given object o along the variable point S of a given grid, one copy of o for each point of the grid. $\circ \circ 0^{s} \circ \circ \circ$ ${ }^{\circ} \mathrm{R}$ The way of placing copies of the object o depends on two points related to it: the guide point G and the reference point R . For each point S on the grid a copy of object o is - translated by the vector GS; - then, optionally, rotated by angle $\angle \mathrm{GRS}$ around S; - then, optionally, dilatated by factor \|RS	/	RG	from centre S. The figure below shows the multiplication of object o along the grid without rotation and dilatation. The figure below shows the multiplication of object o along the grid with rotation and dilatation. To execute the command select: 1. the reference point R; 2. the guide point G; 3.; any grid-point (setPoint) on the grid; 4 . the object O to position along the grid.

Multiply along polyline	Position geometrically similar copies of a given object along each segment of a polyline	This command positions similarity copies of an object along the sides of a polyline. The similarity transformation brings two given reference points of the object to the endpoints of respective sides of the polyline. Select: 1. the object to position along the grid; 2. the 1st reference point of the object (a point); 3 . the 2 nd reference point of the object (a point); 4. the polyline along which to position the object.
Repeat transformation	Apply recursively a number of times a transformation to an object	Select: 1. the transformation; 2. the number of repetitions; 3 . the object to which to apply to recursively the transformation. A sequence of object will appear, each object is transformed from the previous one with the given transformation.

4.8. Advanced commands

$\left.\begin{array}{|l|l|l|}\hline \text { Command } & \text { Purpose } & \text { Comments } \\ \hline \text { Shapes } & \begin{array}{l}\text { Construction } \\ \text { of various } \\ \text { commonly } \\ \text { used shapes } \\ \text { (isosceles } \\ \text { triangle, } \\ \text { rectangle, } \\ \text { regular n-gon } \\ \text { and many } \\ \text { others) }\end{array} & \begin{array}{l}\text { This command allows you to easily construct frequently used } \\ \text { dynamic shapes. } \\ \text { In the form that appears, first select the type of shape (triangle, } \\ \text { quadrilateral, other) and then the specific shape. Then follow } \\ \text { the instructions on the information line. } \\ \text { Note. The input vertices of the shape should follow a positive } \\ \text { orientation (for some shapes this is irrelevant). } \\ \text { Not all vertices of the constructed shape are displayed. Make } \\ \text { them accessible with the command Point/Vertices. } \\ \text { By default the vertices of the constructed shapes are not } \\ \text { labelled. You can label them with the commands } \\ \text { Action/Labels/Auto label or Action/Labels/Label all. }\end{array} \\ \hline \text { Triangle shapes are listed with their descriptive names (e.g., }\end{array}\right\}$

		Triangle 3-4-5, Triangle 10-60-90) or with descriptive properties involving quantities shown below. In all cases it is required to enter two base vertices of the triangle, here named as (1) (vertex A) and (2) (vertex B) - and sometimes some additional data. The additional data may involve the sides a, b, c or angles A, B, C. Examples: $C=90$ - You get a right triangle, the third vertex (C) is free. $a: b=2$ - The third vertex (C) can be moved along the Apollonius' circle. $A=60 \& a-b: c=1: 2-$ You get the specified triangle. Quadrilateral shapes are all listed with their descriptive names (e.g. Square, Equidiagonal). In all cases you first enter the first two vertices of the quadrilateral - and possibly one or two additional vertices. You always obtain a dynamic shape in which the vertices and/or some control point can be moved. Other shapes consist of regular polygons and conics.
Check property	A collection of tests on geometric objects (collinearity of points, congruence of triangles and many others).	This collection of commands contains checks for a variety of geometric properties. In the form that appears when the command is clicked, first select the type of property you want to check (position, equivalence, shape). Then select a property from the displayed list. Afterwards, follow the instructions in the information line. Besides the obvious use, these checks are important for the command Advanced/Implicit construction, which tries to modify a given construction so that a previously defined check is fulfilled.

Locus	Create the locus of a constructed point as another point moves along an object.	Select: 1. a constructed point to be traced (the point should depend on the point (2); 2. the point to be moved along a path; 3. the object (circle, arc, line, line segment, polyline) along which (2) moves. The resulting object is a curve, which represents the trail of (1) as (2) moves along (3). Note. It is not required that the point (2) lies on the object (3). Note. If the resulting locus appears to be (part of) an underlying common object (line, circle or conic, cubic), that object can be created too.
Implicit locus	Obtain a hint for the locus of points for which a constructionrelated parameter is fixed	The command attempts to suggest a possible locus of a constructed point in the construction, so that a constructionrelated parameter has a desired value. Only points, lines, circles, conics, and cubics are eventually suggested as a possible locus. Note. At best, the command provides just hint for the locus. The hint should always be critically evaluated. Note. This command reduces the reliability of observational results.
Implicit construction	Find the position of a point so that a condition is satisfied Obtain a hint for the locus of points for which a given condition is satisfied Modify up to three objects in the construction so that condition is satisfied	There are two versions for this command. In both cases the program attempts to modify one or more objects in a construction so that a given condition is fulfilled, i.e. so that a checked property is true. In the simple version of the command, the program attempts to find the position of a given free point so that a target (previously defined) condition is fulfilled. The positioned free point can be attached to a line or circle or completely free. In case that several points on the plane fulfil the given condition, OK Geometry occasionally suggests a hint for the locus of such points. Use the simple version of the command as follows: Create the initial construction, which satisfies all conditions except one (the target condition). You want to position a variable free point so that the target condition is satisfied. Using the command Advanced/Check property find whether the target condition is satisfied (e.g., whether two objects coincide, whether three points are collinear). At this point, obviously, the target condition is not yet satisfied. Call the command Advanced/Implicit construction. A form (for simple version of the command) appears. Choose one of the

		three options for implicit construction. The first two options deal with situations where we expect the solution in form of a single point (either on an object or on the plane). The last options deals with situations where we expect the solution in form of a locus of points (a line, a circle, a conic, a cubic). When you fill the form, click OK and pick the variable point. The variable point attains a new position. Check whether the desired position of the moved point has been found, i.e. whether the target condition is true.
Optimisation		

Get macro	Read one or more macros saved in from previous sessions.	
Execute macro	Execute a macro	Select a macro and execute it as any other command.

The Sketch Editor of OK Geometry Plus contains two additional groups of commands: Special and Generic. The first group is a collection of commands on various triangle objects. The second group is dedicated to generic constructions. Both groups of commands are described in the OK Geometry Plus Reference manual.

5. Examples

The examples in this section illustrate the use of some of the commands of OK Geometry Sketch Editor. The main purpose of the Sketch Editor is to allow fast and effective construction of geometric configurations, which are then analysed in OK Geometry. The analysis and the observed properties are the focus of the work.

Usually there are many ways to complete a construction task in OK Geometry Sketch Editor. In the following examples we show only one way - to illustrate a command or a construction strategy.

5.1. Predefined shapes. Commands on a polyline

Example. Midpoints in a quadrilateral

Operations on line segments (e.g., midpoint) can be applied in different ways to polylines (see Section 2.9).

Task:	In an arbitrary quadrilateral $A B C D$, mark the midpoints $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ of the four sides. What interesting properties of the obtained configuration can you spot?	
File:	OKExamples\OKG_SketchEditor\OkEditEx_1.p OKExamples\OKG_SketchEditor\OkEditEx_1a.pro OKExamples\OKG_SketchEditor\OkEditEx_1b.pro	
Strategy:	Draw the quadrilateral as a predefined shape. Use the Midpoint command on all sides of the polyline at once.	
Procedure/S tep	Sketch Editor command	Comment
1	Shapes\|Quadrilateral	Pick 4 vertices. You obtain an unlabelled

	quadrilateral.	
2	Point \mid Midpointor$\bullet \bullet 1 / 2$ buttonlPoint to the quadrilateral (at one of the edges). In the form that appears, select 'On each segment' to obtain at once the midpoints of all sides.	
3	Action\|Labels	Label all Label all created points. The order of the labels follows the order of construction of the points.
Suggestions for the analysis	According to the construction, we are interested in properties that are invariant under the cyclic permutation of vertices: ABCD EFGH. (See OkEditEx1a.pro for an elaboration.) What can you say about the shape of the quadrilateral EFGH? (See OkEditEx1a.pro for an elaboration.) How is the area of EFGH related to the area of ABCD? (See OkEditEx1b.pro for an elaboration.)	

5.2. Complex construction operations

This example demonstrates how complex construction commands help to analyse a construction.

Example. Construct a circle that touches three given objects

Task:	A circle is inscribed into another circle. Construct a circle that touches the two circles and the line through the centres of the two given circles.
File:	OKExamples $\backslash O K G _$SketchEditor
Strategy:	Draw the configuration using complex commands (e.g. construct a circle tangent to three other circles/lines/points). A study of the construction will reveal how to work out the construction with Euclidean construction tools.

Procedure /Step	Sketch Editor command	Comment			
1	Circle CircleCentre+point or button	Draw the outmost circle with centre S. (See the labels on the figure above. Until Step 6 do not bother about the labels on your display.)			
2	Circle\|CircleCentre+object or \square (1) button	Construct a circle tangent (from inside) to the outmost circle. Pick the centre (T). Pick the outer circle. Click on Alt button until the shown new circle is the desired one.			
3	Line\|Line 2 points or \square button	Construct the line through the points S and T.			
4	Circle\|Circle 3 objects or \square button	Construct the circle tangent to the three drawn objects: Pick the outer circle, the inner circle, and the drawn line (any order of picking them will do). Click repeatedly on the Alt key until the new circle is the desired one.			
5	Point\|Centre of circle Point	Pick the recently constructed circle to obtain its centre.			
6	Action\|Labels	Clear all labels Action\|Labels	Label vertex Action\|Labels	Label auto	After you set the label A skip to Label auto. Then pick the points in the desired order to obtain labels A, B, C, D. Work in a similar way for labels S,T,U.
7	Action\|Restyle objects	Select first the desired colour, width and line style; then select the line or circle to be modified. Repeat this step as desired.			
Suggestion s for the analysis	- How to do the construction with Euclidean tools only? The analysis reveals lots of properties of the configuration. We want to know the position of the point C on line $A B$ and the position of D right above the point C. - To obtain the position of C use the ? \square button and select the point C . To inqure on the segment $C D$, click on the \square $?$ button and select point C and D.				

5.1. Transformations

The following example demonstrates how to define and apply a transformation.

Example. Isosceles triangles on top of a triangle

Task:	On each side of a given triangle $A B C$ draw three similar isosceles triangles. Study the obtained configuration.

File:	OKExamples\OKG_SketchEditor\OkEditEx_3.p		
Strategy:	Draw a triangle $A B C$. On one of the sides place an isosceles triangle. Using the similitude transformation construct copies of the isosceles triangles on the other two sides.		
Procedure /Step	Sketch Editor command	Comment	
1	Shape\|Triangle Action\|Labels	Label all	Draw a triangle. Label all the vertices, they are labelled as A,B,C.
2	Shape\|Isosceles Action\| Labels	Label all	On the side BC draw an isosceles triangle: Point to C, to B and then approximately where you want D to be.
3	Transform\|Similarity	First we define a similarity that maps BC to CA. We immediately apply this similarity to the isosceles triangle and to the point D . Select the point B, then C (the desired image of B). Select the point C, then A (the desired image of C). The created transformationis automatically given the name Sim_BCCA. Immediately apply the transformation to the isosceles triangle (click on it). Set the new vertex as point E . Analogously construct a triangle on the side $A B$.	
4	Action\|Auto label Action\|Colours and styles	Label properly the vertices. Apply the desired attributes to lines and points.	
Suggestion s for the analysis	According to the construct cyclic permutation of verti The configuration has som Observe.	interested in properties that are invariant under the F. sting properties. Find them with the command	

5.2. Implicit constructions

The following is an example of an implicit construction of a point.
Example. Where to position a point?

Task:	Given is a triangle $A B C$. Construct a point D on the side $B C$ so that the incircle $k 1$ of the triangle $A B D$ and the incircle $k 2$ of the triangle ADC touch each other.		
File:	OKExamples\OKG_SketchEditor\OkEd	x_4.p	
Strategy:	We create a construction as required by the task, except that circles k1 and k2 do not touch each other. We obtain the tangency requirement with and implicit construction, by moving the point D along $B C$, so that the tangency requirement is fulfilled. An analysis of the resulting configuration (hopefully) provides a hypothesis how to obtain the point D in a simple way-.		
Procedure/ Step	Sketch Editor command	Comment	
1	Shape\|Triangle Action\|Labels	Label all	Draw a triangle. Label all the vertices, they are labelled as A, B, C.
2	Point \| Point on object	Draw the point D on the side $B C$.	

	Line \| Segment	Draw the line segment AD.		
3	Circle\|Circle 3 objects or \square button	Construct the circle tangent to the three drawn objects: Pick one by one the three sides of ABD. Click repeatedly on the Alt key until the new circle is the incircle of ABD. In the same way obtain the incircle of ADC..		
4	Advanced\|Check property	Position	Tangent	Pick the two incirles. A condition is declared, its default name is Tange_xx'. The condition Tange_xx appears (as False) in the list of parameters. (In the next step we instruct OK Geometry to move the point D along the $B C$ so that the condition Tange_xx becomes True.)
6	Advanced\|Implicit construction	In the form that appears check the option Move a point along some object, since we want to position D on the side $B C$ of our triangle so that the conditionTange_xx will be met. Leave the other options as suggested. Click on the OK button in the form. Pick the point to be modified, i.e. the point D. Finally, pick the constraint object, i.e. the side BC, along which D will be positioned. (Now D should appear in a desired position.)		
Suggestion s for the analysis	The observation of the obtained confi fact that can be easily proven. This is a	uration shows that $\|A B\|+\|C D\|=\|A C\|+\|B D\|$, a well known property of the point of contact of the		

	incircle of $A B C$ with the side $B C$. Thus, we hipothetise that this is the position of the point D. Note. The presence of implicitly constructed objects reduces the reliability of observational results.

The following is an example of an implicit construction of a point.
Example. A cyclic tangential quadrilateral

Task:	Construct a quadrilateral that is both cyclic (i.e. its vertices lay on a circle) and tangential (i.e. all sides are tangent to a circle). Study the obtained quadrilateral. Given the inscribed circle and the points E,F,G, how to construct the point H , so that the resulting quadrilateral $A B C D$ is cyclic?	
File:	OKExamples\OKG_SketchEditor\OkEd	Ex_4a.p
Strategy:	Starting from an (in)circle we pick 4 p circles at these points. The resulting q cyclic. In fact, we draw the (out)circle Using the implicit construction comm so that the point D lays on the outer An analysis of the resulting configurat construct the point H given the (in)cir	nts, E, F, G, H on it and draw the tangent lines to the adrilateral $A B C D$ is tangential but, in general, not hrough A, B, C and observe that D does not lay on it. nd of OK Geometry we position H on the (in)circle cle. $A B C D$ is then be cyclic and tangential. (hopefully) provides a hypothesis how to e and the points E,F,G.
Procedure/ Step	Sketch Editor command	Comment
1	Circle\|Centre+point Point\|Point	Draw the incircle. Position the points E,F,G,H on it.
2	Line\|Line 2objects	To draw the tangent line to the incircle at E pick the point E and the incircle. In the same way

		construct the tangents to the incircle at F,G, and H.		
3	Point\|Point Action\|Hide Line\|Polyline	Construct the intersection points A, B, C, D. Hide the four tangent lines. Draw the quadrilateral $A B C D$.		
4	Circle ${ }^{\text {Circle 3obj }}$	Pick the points A, B, C. The outcircle through A, B, and C appears.		
5	Advanced\|Check property	Position	PointOnObject	Pick the point D and then the outer circle. Name the resulting condition 'positionD'. The condition positionD appears (as False) in the list of parameters. (In the next step we instruct OK Geometry to move the point H along the incircle so that the condition positionD becomes True.)
6	Advanced\|Implicit construction	In the form that appears, check the option Move a point along some object, since we want to position H on the 'incircle' (object) so that the condition positionD (that D lays on the 'outcircle') will be met. Leave the other options as suggested. Click on the OK button in the form. Pick the point to be modified, i.e. the point H. Finally, pick the constraint object, i.e. the 'incircle', along which H will be positioned. (Now H and D should appear in a desired position.)		

| Suggestion |
| :--- | :--- |
| s for the |
| analysis |\quad| We are interested in properties that are invariant under cyclic permutation of vertices: |
| :--- |
| ABCD EFGH. The analysis will provide additional evidence if a second cyclic permutation |
| AB CD FH is specified. |
| The cyclic tangential quadrilaterals have many indeed interesting properties. Study them |
| with the Observe command. |
| How to construct the point H in Euclidean steps? Note that the incircle and the points |
| $\mathrm{S}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{B}$ and C can be taken as given. Among the properties listed by OK Geometry, we |
| are looking for some property that relates |
| the given objects to the point H. |
| One of these relations is shown here. It is |
| easy to show that the two emphasized |
| triangles are similar isosceles triangles. If you |
| use this fact, the construction of the point H |
| is fairly obvious. |
| Note. Another way to obtain H is to consider |
| that EG is perpendiculat to FH. |
| Note. Quadrilaterals that are tangential and |
| cyclic are called bycentric. With OK |
| Geometry you can draw a bycentric |
| quadrilateral with the Advanced\|Shapes |
| Quadrilaterals\|Bycentric command. |
| Note. The presence of implicitly constructed objects rees the reliability of |
| observational results. |

5.3. Implicit objects by measuring

The following trivial example demonstrates the implicit construction of the locus of points.

Example. The angular size of a line segment

Task:	Given a line segment AB, we want to find instances of points P, from which the segment AB is visible at a given angle, say 50°. In other words, we look for the locus of points P, for which the angle APB is constant.

File:	OKExamples\OKG_SketchEditor\OkEditEx_5.p
Strategy:	Given the segment $A B$ we pick an arbitrary point P and measure the angle APB. Then we ask OK Geometry to find some instances of positions of point P, for which the angle APB has the desired value.
Procedure /Step	Sketch Editor command ${ }^{\text {a }}$ Comment
1	Point Draw the vertices A, B and the point P. Action\|Label vertex Then measure the angle APB. Name the measured Number\|Angle
2	 Fill in the form as shown on the left: Since we are looking for the locus for P where a parameter (i.e. AngleAPB) is specified, fill on the form as shown on the left and click OK. After the form is filled out, pick the point P (the variable object). OK Geometry gives a hint that the sought locus for P is a circle (see Figure 9). The hint is not the correct solution, but is not far from it.
	Important note. As can be seen from this trivial example, OK Geometry may only provide a hint for the sought locus of points. In our example, the correct locus is the arc BPA (since it refers to the size of the oriented angle), and not the whole circle. Depending on the situation, OK Geometry may miss the locus, provide an 'extended' locus or even gives a misleading hint. It is only a hint that requires additional checks.

Figure 9

5.4. Implicit objects by construction

The following example shows the use of implicit construction command.
Example. The pedal points. Simson's line

Task:	The orthogonal projections of a point P onto the baselines of the three sides of a triangle $A B C$ are called the pedal points of P wrt. the triangle $A B C$. The pedal points are the vertices of the pedal triangle of the point P wrt. the triangle $A B C$. Is there some point P, for which the corresponding pedal points D, E, F are collinear? What can be said about such point P ?	
File:	OKExamples\OKG_SketchEditor\OkE	Ex_6.p

Strategy:	Given a triangle $A B C$ and an arbitrary point P, we construct the pedal points D, E, F. With the command Implicit objects we find several instances of points P that satisfy the condition that its pedal points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are collinear.	
Procedure/ Step	Sketch Editor command ${ }^{\text {a }}$ Comment	
1	Point\|Point Draw the vertices A, B, C, and the point P. Line\|Line 2points Construct the lines $A B, B C, C A$. Line\|Polyline For reference draw the triangle $A B C$ as a polyline. Note: We need the lines since we project P to the base lines of the triangle's sides.	
2	Line\|Perpendicular segment Action\|Label	Label vertex\quadDraw perpendicular segments connecting P to the baselines of the triangle $A B C$. Label the points D, E, F.For each base line (!) find the projection of P to the line as nearest line to P.
3	Advanced\|Check property \mid Position \mid CollinearP\quadCheck whether D, E, and F are collinear. Name the condition as CollinearDEF.	
4	Advanced\|Implicit construction Since we are looking for the locus of points of P that satisfy a given condition (i.e. CollinearDEF), fill the form as shown of the left. Then click OK, and pick the point P (to be moved around). (The sought locus appears, see Figure 9.)	
	Important note. OK Geometry may provide only a hint for the sought locus of points. In our example the found locus happens to be indeed (by Simson's theorem). However, depending on the situation, it can happen that OK Geometry misses the locus, provides an 'extended' locus or even gives a deceiving hint. The result thus always requires additional checks.	
Suggestion s for the analysis	Once you obtain a hint, you can check in a more reliable way that the points on the suggested locus satisfy the considered condition. You can use OK Geometry to prove the theorem (start with a new construction where P lies on the circumcircle of $A B C$ and analyse the situation. The proof is not trivial. Try also to investigate, where should P lie in order that the pedal triangle has a fixed area (proceed as in example 5.3).	

Figure 10

5.5. Constructions by optimisation

This example shows how to generate a hypothesis for the solution of an optimisation tasks.
Example. Fermat point of a triangle

| Task: | For a given triangle ABC find the
 point D for which the sum of the
 distances from the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ to
 D is minimal. |
| :--- | :--- | :--- |
| File: | OkExamples $\backslash O K G _S k e t c h E d i t o r \backslash O k E d i t E x _7 . p$ |

	around to a position where the sum of distances to the vertices is minimal.	
Procedure /Step	Sketch Editor command	Comment
1	Shape\|Triangle Action\|Label all Point[Point	Draw a triangle. Label the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Draw and arbitrary point D.
2	Number\|Distance to object	Measure the distance from D to A. Point to the two points. Name the parameter DistanceAD. In the same way measure DistanceBD and DistanceCD. In the next step we shall calculate the sum of the three measured distances.
3	Number\|Value, expr	Click first on DistanceAD. In the information row appears [DistanceAD]. Then click on the + key on the keyboard. Click on the DistanceBD. Repeat this also for DistanceCD In the information row appears [DistanceAD] + [DistanceBD] +[DistanceCD]. Click on the red coloured OK to enter this expression. Name the result Sum_AD_BD_CD. In the next step we let OK Geometry move around the point D so that Sum_AD_BD_CD attains a minimal value.
	Advanced\|Optimisation	In the form that appears:
4		Select minimum (Optimise for), Uncheck the Constraints option, since D is not restricted to an object (line, circle, conic). Prefer the Fast method. In case the results are not as expected try with the option unchecked. Select the parameter to be optimised, i.e. Sum_AD_BD_CD. Then click OK in the information line. Pick the point to be moved around (D). The point D is appears on new position (Figure 11). Note, if one of the angles is bigger than 120 deg. the point D is positioned behind one of the

		vertices.
Suggestion s for the analysis	The point D assumes the position of the Fermat point (if all the interior angles are less than 120 degrees). Use Observe to find the characteristic property of Fermat's point. Note that the property should be invariant under the cyclic permutation of labels ABC.	
	Note. Optimisation reduces the reliability of observational results.	

Figure 11

This example will show how to generate hypothesis for the solution of a complex optimisation tasks. The solution can be afterwards analysed with Observe. From the analysis a proof can be inferred.

Example. A minimal triangle

Task:	In a given triangle $A B C$ inscribe the triangle DEF with minimal perimeter.				
File:	OKExamples\OKG_SketchEditor\OkE	Ex_8.p			
Strategy:	Given is a triangle $A B C$. We draw another triangle DEF - not necessary inscribed in ABC - and measure its perimeter. Then, by (automatically) moving the points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ along the corresponding sides of the triangle ABC, OK Geometry will position the points D,E,F to obtain the triangle with minimal perimeter. A subsequent analysis will reveal the properties of the optimised triangle DEF. From the observed properties a proof can be inferred.				
Procedure/ Step	Sketch Editor command	Comment			
1	Advanced\|Shapes	Triangle	Triangle Action	Label all	Draw a triangle. Label the vertices A, B, C. Draw also another triangle, label the vertices D,E,F. You can place these vertices along the sides of $B C, C A, A B$, but this is not necessary.
2	Number\|Length, perimeter	Measure the perimeter of triangle DEF. Name the value as PerimDEF.			

	Note. In the next step we shall move D,E,F along $B C, C A, A B$ so that PerimDEF will attain a minimal value.
3	Advanced\|Optimisation In the form that appears choose the Advanced button. Check the entries as shown in Figure 12. In particular: Select the parameter to minimise (PerimDEF). Select the minimum option. Select 3 variable objects since we shall move three points: D,E,F. Check the Constraints option since the three points shall move along the sides of the triangle ABC. Use Fast method, if possible. To confirm the options click OK in the form. Click on the point E, then the restriction (the pointed segment $C A$ of $A B C$). Click on the point F, then the restriction (the pointed segment $A B$ of $A B C$). The point D,E,F are given the calculated optimal position. Click on OK button.
Suggestion s for the analysis	In the Treatment section set the Invariant cycle to ABC DEF. Inspect the properties of the found solution. The properties can lead you to a proper construction and also to the proof of the correctness of your construction.

Figure 12

Figure 13

5.6. Locus of points

This simple example will show how to create a locus of points.

Example

Task:	Let H be the orthocentre of the triangle ABC . If the position of C changes (with A and B fixed), the position of H changes accordingly. What is the locus of point H as C takes the place of points on a line that is parallel to AB ? What is the locus of point H as C takes the place of points on a circle through A and B ?
File:	OKExamples\OKG_SketchEditor\OKEditEx_11.p

Strategy:	We draw a triangle $A B C$, a line, parallel to $A B$, and a circle through A and B. Then we use twice the command Locus for the point H : first when C moves along the line, then when C moves along the circle.
Procedure /Step	Sketch Editor command ${ }^{\text {a }}$ Comment
1	Shape\|Triangle Draw a triangle. Action\|Label all Point[Triangle 4 centres\|Orthocentre Label the vertices A,B,C.
2	Line \mid Parallel Draw a parallel to $A B$ through an arbitrary point. Circle \mid Circle 3 obj Draw a circle through A, B, and an arbitrary point.
3	Advanced\|Locus Click first on the point H , then on point C , then on the line that is parallel to $A B$. OK Geometry observes that the locus appears to be a parabola. OK Geometry can draw a recognised object, the locus (as a polyline), or both.
4	Advanced\|Locus Click first on the point H , then on point C , then on the line circle through A, B. OK Geometry observes that the locus appears to be a circle. OK Geometry can draw a recognised object, the locus (as a polyline), or both.
Suggestion s for the analysis	If a locus is a recognised object you can analyse its position and hypothetise how to obtain it by construction. Note that the recognised objects are obtained by observation. This calls for additional checks and, obviously, a proof.

5.7. Macros

This simple example will show how to create a macro.

Example

Task:	We want to create a macro for the construction of a 'bulge' for given pair of points A, B. Each segment of a bulge measures one third of the distance between A and B. The angles between segments should measure 120 and 60 degrees.	
File:	OKExamples\OKG_SketchEditor\OkEd	E_9.p
Strategy:	Given the points A, B we first draw poi Then we draw and equilateral triangle polyline. At this point we define the macro. It is input data and what exactly the outpu and B . We want the output data to be way.	ts at each third of the distance between them. on the middle part and draw the desired path as a very important to think in advance what are the data. In our case the input data are the points A he resulting polyline and the three points on the
Procedure /Step	Sketch Editor command	Comment
1	Point\|Uniform divide Shape\|Equilateral triangle	Divide a line segment in three equal parts. Click on points A, B, and write 3 (the number of parts) in the information line. Confirm by clicking OK in the information line. Construct an equilateral triangle using the two points in the middle part of the segment.
2	Line\|Polyline	Draw the polyline for output by clicking the vertices in appropriate order.
3	Macros\|Make macro	Fill in the form as shown in Figure 14 and click

		Proceed. Then you need to click on the objects on the configuration, one by one, as they are stated in the input and in the output list. In the final form that appears, you can choose to use the constructed macro only within the current session or to store it and use also elsewhere (with the Get macro command). Note. The macro is not part of the construction. The next time you open the construction the macro will not be available unless you store it retrieve it with the Advanced\|Get macro command.
4	Advanced\|Execute macro	The constructed macro is a new command available in the form that appears.

Figure 14

5.8. Creating scenes

Scenes are visual presentations of a configuration. Scenes of the same configuration differ in how the objects of the configuration are emphasised, bleached or made transparent. Here we show how to easily create a configuration and scenes that represent properties of the configuration or the steps of its geometric construction.

Incremental scenes

When we add scenes incrementally, each scene is obtained by adding one or more object to the previous scene. The prototypical case of this type of scenes is the presentation of the steps of a Euclidean construction (which may differ from the steps in the OK Geometry construction). The scenes can represent a single step or several steps of the Euclidean construction - the important thing is that the sequence of scenes illustrates the construction steps. To better visualise the steps, in each scene the added objects are emphasised and the previously defined objects are bleached. Recall that the level of emphasis and bleach can be adjusted at any time (with Shift+MouseScroll and Alt+MouseScroll or with appropriate sliders).

We will illustrate the creation of incremental scenes on a trivial case - the construction of a bisector of the line segment $A B$ (Figure 15$)^{2}$.

Figure 15

[^1]1. Begin with the command New construction, then create a segment $A B$ as the initial scene. The objects of the initial scene will be unchanged in the following scenes.
2. Press the $|->S|$ button in Sketch Editor tool box on the right-hand side of the display (it is located in the $4^{\text {th }}$ row, in the group of commands for scenes). In the form that appears, select the Incremental option and click OK. You have now created Scene 1 and also Scene 0, which is, at the moment, identical to Scene 1.
3. Now continue with the construction. Whenever you want to present the state of the construction as a scene, click on $|->S|$ For example: draw the circle with centre B through A and press $\mid \rightarrow$ S \mid, then draw a circle with centre A through B and press $\mid \rightarrow$ S \mid, etc. In our case, we have created Scenes 1-5.
4. If you wish, you can make an additional scene (Scene 6) as a kind of title scene. Using the Scenes command \square you can set the Scene 6 to be Scene 0 (Ground).
5. Remember that you are working all the time at the same configuration. If you colour, move or delete an object, it happens in all scenes. What you can do for a particular scene, is to set the emphasis, bleach and transparency of objects.

You can visualise the scenes in the construction view at any time with the command Commands/Construction steps/Scenes.

You can save the resulting configuration as a construction (.p) file. You can also declare it as an icon (preferably not the starting (Task) icon) of a project.

In the Project view, you can visualise the scenes of an icon when the icon is expanded ($\boldsymbol{\square}$ button).
To see the scenes in a report, select the report style Scenes (mosaic) - otherwise only the title scene (Scene 0) will be displayed.

You can also display the scenes as an animation. To do this, create a report in HTM(L) format with figures in SVG format (and a report structure other than Scenes (mosaic)). You will generate animated HTML figure (Figure 16), in which you can view individual scenes (green dots) or the animation of the construction (green triangle).

Figure 16

Differential scenes

Differential scenes consist of a fixed initial configuration and specific object that are attached to the initial configuration in order to obtain specific scenes. Figure 17 shows an example of differential scenes - the scenes of a configuration show some interesting circles (Bankoff's circles) related to arbelos. The arbelos itself has been set as the initial scene. In each of the new scenes, some new objects were added to the initial scene. ${ }^{3}$

[^2]

Figure 17
To create the scenes in the configuration in Figure 17 proceed as follows:

1. Begin with the command New construction, then create the arbelos in the initial scene. The objects of the initial scene will remain unchanged in the following scenes. Each new scene will start from this initial scene.
2. Press the $|\rightarrow S|$ button in Editors tool box on the right-hand side of the display (it is located in the $4^{\text {th }}$ row, in the group of commands for scenes). In the form that appears, select the option Differential and click OK. You have now created two identical scenes: Scene 1 and also Scene 0.
3. Now continue with the construction. Create the new objects to be included in Scene 2, then click on $\rightarrow>S$. You have created the Scene 2 and, immediately, the initial scene reappears. Now draw the required objects for Scene 3. Then, click on $|->S|$ to create Scene 3, and so on. Scenes 2-6 are created in this way.
4. If you wish, you can create an additional scene (Scene 7) as a kind of title scene. Using the Scenes command \square you can set the Scene 7 as Scene 0 (Ground).
5. Remember that you are working all the time on the same configuration. If you colour, move or delete an object (in the initial scene), it applies to all scenes. What you can do only for a particular scene, is to set the emphasis, bleach and transparency of objects.

As with the incremental scenes, you can visualise scenes in the construction view (command Commands/Construction steps/scenes) and in the project view when the considered icon is being expanded ($\boldsymbol{\square}$ button). To include scenes in a report use the report style Mosaic (scenes) or create an animation in $\mathrm{HTM}(\mathrm{L})$ format.

Scenes from observed properties

Scenes from observed properties consist of a fixed initial configuration (scene) and visualised geometric properties that are attached to the initial scene. The visualised properties are obtained from automated observation and are edited if necessary. The scenes are therefore differential scenes. Figure 18 shows an example of scenes from observed properties. The initial configuration consists of a square $A B C D, a$
semicircle on AD, and line CE that is tangent to the circle. The other scenes show some of the properties of the initial configuration that were 'imported' from the OK Geometry list of observed properties. ${ }^{4}$

	Scene 2 - Similar triangles	Scene 3 - Equal area
	Scene 5 - Multiple intersections	Scene 6 - Same ratio

Figure 18
To create the scenes in the configuration in Figure 17, proceed as follows:

1. Begin with the command New construction. Then create the configuration in the initial scene. The objects of the initial scene will remain unchanged in the scenes to follow. Each new scene will start from this initial scene.
2. Press the $\mid->S$ button in Sketch Editors tool box on the right-hand side of the display (it is located in the $4^{\text {th }}$ row, in the group of commands for scenes). In the form that appears, select the option Observed properties and click OK. You have now created two identical scenes: Scene 1 and also Scene 0.

[^3]3. Now it's time for the observation (click on the Observe button in the main menu bar). A list of observations appears on the left-hand pane. Click on a property that you consider relevant - the property is now displayed (in the right-hand pane). Right-click on the pane and select the command Add to construction (Figure 19), which will take you to the Sketch Editor.

Figure 19
In the Sketch Editor you can modify the visualised property (delete or add some objects, select different angles with the Anchor command, etc.). Now click on $\mid->S$ to create a new scene that represents the chosen property. You have created the Scene 2. You will automatically return to the list of observations.
4. Repeat step 3 for the properties that you want to record as scenes. In this way, the Scenes 2-6 are created.
5. If you wish, you can make an additional scene (Scene 7) as a kind of title scene. Using the Scenes command \square you can declare Scene 7 as Scene 0 (Ground).
6. Remember that you are working all the time on the same configuration. If you colour, move or delete an object (in the initial scene), this applies to all scenes. What you can do for a specific scene is to set the emphasis, bleach and transparency of objects.

As with the incremental scenes, you can visualise scenes in the construction view (command Commands/Construction steps/scenes) and in the project view when the considered icon is being expanded (—button). To include scenes in a report use the report style Mosaic (scenes) or create an animation in HTM(L) format.

Editing scenes

Scenes can be easily created using one of the previously mentioned methods (Incremental, Differential, Observed properties). If we want to modify the obtained scenes in any way, we resort to the Scenes command (哕).
With the scenes editor you can

- visualise scenes;
- change the bleach, transparency and emphasis state of any object in any scene;
- delete, add and copy scenes.

Here is a common use of the scenes editor: each of the above methods for making scenes creates two identical initial scenes (Scene 0 and Scene 1). Scene 0 is the ground scene, it is the scene displayed in icon and in the construction view. Sometimes Scene 0 should be the title scene and be different from Scene 1. To achieve this, we create an additional scene (in one of the above methods for adding scenes) and, using the scenes editor, copy the additional scene to the Scene 0 (end then delete the added scene).

You can use the scenes editor to can create scenes from any configuration, but the process is quit tedious, so it is better to use to one of the above mentioned methods.

The usage of the scenes editor is self-explanatory. Just remember that you can control the appearance of objects with the buttons in the upper right-hand corner of the display | H | T | N | X | M | ? | (H-emphasis, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | B-bleaching, N -transparency). For example, use the N -button to get rid of the yellow coloured transparent objects or to show them when they are not displayed.

6. An overview of representation of objects

Objects in OK Geometry can have some functional attributes (used mainly for creating scenes of a construction):

- Objects can be hidden (although they are part of the construction, such objects are not visible and are not considered in the analysis).
- Objects can be transparent (objects are not visible, but are taken into account in the analysis).
- Objects can be bleached (such objects can be more or less visible and are taken into account in the analysis; the degree of visibility can be controlled with Alt+mouse-scroll, sometimes also with sliders).
- Objects can be emphasised (the degree of highlighting can be controlled with Shift+mousescroll).

Functional attributes are explained in OK Geometry Basic reference manual.
In this section we present an overview of the representational attributes of standard geometry objects (points, lines, line segments, circles, arcs, conics, triangle cubics). OK Geometry ignores such attributes when observing configurations, but they can make the construction easy to understand and in they can please the users' aesthetics.

Some representational attributes are standard and convey relevant information, e.g., congruence sign, arrow on a line segment. Note that additional information to any objects can be added with the Marker command (such information appears only when the mouse is on the object, see the Mark|Marker command).

Some common representational attributes, e.g. colour, width, style of objects, font, are usually intended to make constructions easy to interpret.

Finally, some objects of the same type can be represented in different ways for clarity. For example, a line may be represented as line segment from edge to edge of the display, or as a segment connecting all declared points on the line, or as a segment extending slightly beyond the declared points on the line, and so on.

The following table shows how the representational attributes of objects can be handled. You will notice that the usual way to choose among various representational options is to use the Anchor command
repeatedly, possibly followed by scrolling the mouse-wheel.

Effect		Command	Applies to	
Linear objects	Set width	Action/Restyle objects	Line	

	options/Report/Lines width \%).		(Angle arc) Polyline Conic Cubic	
	Set shape	Action/Restyle objects		
	Set colour	\bigcirc Action/Restyle objects		
Arrows	Toggle arrow	\rightarrow Action/Mark arrow	Line segment	
	Choose arrows mode	Action/Anchor		
Extension	Choose representat ion mode	Action/Anchor Note. Extensions of lines behave in a different way.	Line Line segment Arc	(1)
	Extensions size	Note. The size of extensions can be set in Configure/General options/Sketch\|Extensions of lines.	Line Line segment Arc	

	Triangle centres notation	Configure/General options/Sketch/Triangle centre notation Note. The option also sets the way of labelling the initial reference triangle.		
	Labels font	Configure/General options/Sketch/Point labels - font		
	Labels colour	Configure/General options/Sketch/Point labels - colour		
	Texts font	Configure/General options/Sketch/Text on sketch - font		
	Text colour	Action / Restyle objects Use the colour for colouring points.	Text Marker	
Point attributes	Set point size	Action / Restyle objects Note. The size of points can be additionally adjusted for - display in the construction view (Configure) General options/Sketch/Point size (\%)), - export construction and reports (Configure/General options / Report / Point size (\%)).	Point	
	Set point shape	Action/Restyle objects		
	Set point colour	Action/Restyle objects		

Angle	Display angle	Action \| Mark angle	Angle	
	Choose angle between lines	Action/Anchor	Angle	
	Angles representat ion mode	Configure/ General options/Sketch/Angle - display mode		
	Max. display angle	Configure/ General options/Sketch/Angle - display mode Displayed angles can measure $0^{\circ}-90^{\circ}, 0^{\circ}-180^{\circ} \text { or } 0^{\circ}-360^{\circ} .$		
	Angle colour, arc width	Action/Restyle objects		
	Angles arc radius	Configure/General options/Sketch/Angle - approx. arc radius		
	Auxiliary lines on/off	Angle guides can be toggled with the \square sign in the upper right corner of the display.		
Filled circles, polygons	Toggle fill	Action /Mark/Mark fil I(area)		
	Fill colour	Action/Restyle objects Be sure to select the line colour and to activate the button.		
	Fill mode	Configure/General options/Sketch/Hatch mode of filled areas You can choose between different dither modes,		

		random mode and solid mode. Note that some modes do not export well to some graphics formats.		
	Fill density	Configure/General options/Sketch/Hatch (fill area) density Density applies only to random and solid fill modes.	Action/Anchor Fill level	The filled polygons/circles are transparent unless the fill mode is solid. If the fill is solid, each filled object will hide the filled objects below it. In order to control the overlap you can set the fill level of a filled object. The fill levels range from 1 (at the top) to 5.

[^0]: ${ }^{1}$ Do not confuse the Alt button with the Alt key on the keyboard.

[^1]: ${ }^{2}$ See OKExamples \OKG_SketchEditor\OkEditEx_12.pro and OKExamples\OKG_SketchEditor\OkEditEx_12.htm.

[^2]: ${ }^{3}$ See OKExamples \OKG_SketchEditor\OkEditEx_12.pro and OKExamples\OKG_SketchEditor\OkEditEx_12.htm.

[^3]: ${ }^{4}$ See OKExamples \OKG_SketchEditor\OkEditEx_12.pro and OKExamples\OKG_SketchEditor\OkEditEx_12.htm.

